Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1-(Dibromomethyl)-4-methoxy-2methylbenzene

Xiaoming Liu, Colin A. Kilner, Mark Thornton-Pett and Malcolm A. Halcrow*

School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, England Correspondence e-mail: m.a.halcrow@chem.leeds.ac.uk

Received 21 November 2000
Accepted 1 December 2000

The title compound, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}$, is a major product of the radical bromination of 4-methoxy-1,2-dimethylbenzene. Each Br atom is involved in a close contact with the O atom of a neighbouring molecule, forming a geometry that is suggestive of weak intermolecular $\mathrm{O} \rightarrow \mathrm{Br}$ charge-transfer interactions.

Comment

There are two recent reports that bromination of 4-methoxy-1,2-dimethylbenzene by excess N-bromosuccinimide under free-radical conditions affords 1,2-bis(bromomethyl)-4methoxybenzene, (I), in $>80 \%$ yield (Ohkawa et al., 1997; Wang et al., 1997). In our hands, the reported procedures both, in fact, form 1-(dibromomethyl)-4-methoxy-2-methylbenzene, (II), and 1-bromomethyl-4-methoxy-2-methylbenzene, (III) (Tanzawa et al., 1995), in addition to (I), with yields of approximately 30% of (I), 25% of (II) and 15% of (III). The crystal structure of (II), a new compound, was undertaken in order to determine unambiguously which of the two methyl groups of the precursor had been doubly brominated.

(I)

(II)

(III)

Interestingly, $\mathrm{C} 10-\mathrm{Br} 12 \quad[1.983$ (4) $\AA]$ is substantially longer than $\mathrm{C} 10-\mathrm{Br} 11[1.948$ (5) $\AA]$. None of the three (dibromomethyl)arenes that have been structurally characterized previously exhibit this feature (García et al., 1995; Stanger et al., 1998; Sygula \& Rabideau, 1998). It is suggestive that the lengthened $\mathrm{C} 10-\mathrm{Br} 12$ bond in (II) is almost perpendicular to the plane of the $\mathrm{C} 1-\mathrm{C} 6$ ring $\left[\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10-\mathrm{Br} 12=95.1(4)^{\circ}\right]$, which might conceivably reflect hyperconjugation between the $\mathrm{C} 10-\mathrm{Br} 12 \sigma^{*}$ orbital and the phenyl π-system. This would provide a convenient rationale for the lengthened $\mathrm{C} 10-\mathrm{Br} 12$ bond. However, static and energy-minimized $A M 1$ calculations (CambridgeSoft, 1999) have demonstrated that $\operatorname{Br} 12$ makes no contribution to the π-orbitals of this compound,
which appears to rule out this explanation. All other bond lengths and angles within the molecule are unexceptional.

There are three unusually short intermolecular contacts in the lattice. Both Br atoms form a contact with O 7 from a neighbouring molecule (Table 1). For both these interactions, the $\mathrm{O} 7 \cdots \mathrm{Br}^{\#}-\mathrm{C} 10^{\#}$ angle ($\#=\mathrm{i}$, ii; Table 1) is close to linear, while the disposition of $\mathrm{C}-\mathrm{O}$ and $\mathrm{O} \cdots \mathrm{Br}^{\#}$ vectors about O 7 forms a distorted tetrahedron [the angles about O7 not in Table 1 are $\mathrm{C} 1-\mathrm{O} 7-\mathrm{C} 8=116.7(4)^{\circ}$ and $\mathrm{Br} 11^{\mathrm{i}} \ldots \mathrm{O} 7 \cdots$ $\mathrm{Br} 12^{\mathrm{ii}}=90.0(2)^{\circ}$; the average angle about O 7 including these intermolecular interactions is hence $108.3(7)^{\circ}$]. These parameters are suggestive of weak intermolecular charge-transfer interactions between the lone pairs of O 7 and the $\mathrm{C}-\mathrm{Br} \sigma^{*}$ antibonding orbitals. There is also a close contact between H 10 and $\mathrm{Br} 12^{\mathrm{iii}}$, related by $1-x, 1-y, 1-z$, with $\mathrm{C} 10 \cdots \mathrm{Br} 12^{\mathrm{iii}}=3.712(5), \mathrm{H} 10 \cdots \mathrm{Br} 12^{\mathrm{iii}}=3.00 \AA$ and $\mathrm{C} 10-$ $\mathrm{H} 10 \cdots \mathrm{Br} 12^{\mathrm{iii}}=129^{\circ}$. A similar intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interaction is observed in the structure of methyl 2,3-bis(dibromomethyl)benzoate (Stanger et al., 1998). For comparison, the sum of the van der Waals radii of O and Br atoms is $3.35 \AA$, and of H and Br atoms is $3.15 \AA$ (Pauling, 1960).

There are two intermolecular $\pi-\pi$ interactions in the lattice, between molecules related by inversion at $1-x, 2-y, 1-z$ (interplanar spacing $3.48 \AA$, centroid offset $3.6 \AA$), and by $-x$, $2-y, 2-z$ (interplanar spacing $3.70 \AA$, centroid offset $3.9 \AA$ A). In both these interactions, the stacked rings are strictly coplanar by symmetry, and have relative orientations that are consistent with an electrostatically attractive $\pi-\pi$ interaction (Hunter \& Sanders, 1990).

Figure 1
The molecular structure of (II) with 50% probability displacement ellipsoids, showing the atom-numbering scheme employed.

Experimental

1-Methoxy-3,4-dimethylbenzene ($5.0 \mathrm{~g}, 36.3 \mathrm{mmol}$), N-bromosuccinimide ($14.4 \mathrm{~g}, 80 \mathrm{mmol}$) and benzoylperoxide $(0.04 \mathrm{~g}, 0.2 \mathrm{mmol})$ were mixed in $\mathrm{CCl}_{4}(70 \mathrm{ml})$, and the resultant suspension refluxed for 30 min . Following cooling and filtration, evaporation of the solvent in vacuo yielded a pale brown oil that contained a mixture of compounds (I), (II) and (III), from thin-layer chromatography and ${ }^{1} \mathrm{H}$ NMR spectroscopy. Compound (II) was separated from the reaction mixture by fractional crystallization of the crude material from 1:1 diethyl ether-hexanes, which yielded moisture-sensitive white microcrystals. Recrystallization from the same solvent mixture yielded small colourless needles. ${ }^{1} \mathrm{H}$ NMR spectrum of (II) $\left(\mathrm{CDCl}_{3}\right.$, $250 \mathrm{MHz}, 293 \mathrm{~K}): \delta 7.76\left(d, 8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \mathrm{H}^{5}\right), 6.88\left(s, 1 \mathrm{H}, \mathrm{CHBr}_{2}\right)$, $6.80\left(d d, 2.8\right.$ and $\left.8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \mathrm{H}^{6}\right), 6.63\left(d, 2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \mathrm{H}^{2}\right), 3.81$ ($s, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.42\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ p.p.m.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}$
$M_{r}=293.99$
Triclinic, $P \overline{1}$
$a=7.4692$ (5) A
$b=8.7343$ (7) \AA
$c=8.9090(7) \AA$
$\alpha=68.104(4)^{\circ}$
$\beta=77.038(4)^{\circ}$
$\gamma=67.310(4)^{\circ}$
$V=495.34(6) \AA^{3}$

Data collection

Nonius KappaCCD area-detector diffractometer
Area-detector scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.396, T_{\text {max }}=0.923$
5761 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.109$
$S=1.013$
2258 reflections
112 parameters
H -atom parameters constrained
$Z=2$
$D_{x}=1.971 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5761 reflections
$\theta=3.26-27.49^{\circ}$
$\mu=8.132 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Lath, colourless
$0.14 \times 0.07 \times 0.01 \mathrm{~mm}$

2258 independent reflections
1698 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=27.49^{\circ}$
$h=-9 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-10 \rightarrow 11$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0469 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.968 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.77 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.012 (2)

Table 1
Selected distances (\AA) and angles $\left({ }^{\circ}\right)$ for the close intermolecular $\mathrm{O} \cdots \mathrm{Br}$ contacts in (II) (\# = i, ii).

Interaction	$\mathrm{O} 7 \cdots \mathrm{Br}$	$\mathrm{O} 7 \cdots \mathrm{Br}^{\#}-\mathrm{C} 10^{\#}$	$\mathrm{C} 1-\mathrm{O} 7 \cdots \mathrm{Br}^{\#}$	$\mathrm{C} 8-\mathrm{O} 7 \cdots \mathrm{Br}^{\#}$
$\mathrm{O} 7 \cdots \mathrm{Br} 11^{\mathrm{i}}$	$2.999(5)$	170.3 (3)	122.3 (3)	112.7 (3) O7 (3) OBr12

Symmetry codes: (i) $-1+x, 1+y, z$; (ii) $x, 1+y, z$.

H atoms were placed in calculated positions and refined using a riding model. The $\mathrm{C}-\mathrm{H}$ distances employed for the final refinement
were $0.95 \AA$ for the aryl H atoms, $0.98 \AA$ for the methyl H atoms and $1.00 \AA$ for the methine H 10 atom.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1996); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

The authors acknowledge the Royal Society of London for a University Research Fellowship to MAH, and the EPSRC for a postdoctoral fellowship to XL and for the purchase of a diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1445). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
CambridgeSoft (1999). CS Chem3D Pro. Version 5.0. CambridgeSoft Inc., Cambridge, MA, USA.
García, R., Riera, J., Carilla, J., Juliía, L., Sánchez-Baeza, F. J. \& Mollins, E. (1995). Tetrahedron, 51, 3627-3640.

Hunter, C. A. \& Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Ohkawa, S., DiGiacomo, B., Larson, D. L., Takemori, A. E. \& Portoghese, P. S. (1997). J. Med. Chem. 40, 1720-1725.

Otwinowski, Z. \& Minor, W. (1996). Methods Enzymol. 276, 307-326.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stanger, A., Shachter, A. \& Boese, R. (1998). Tetrahedron, 54, 1207-1220.
Sygula, A. \& Rabideau, P. W. (1998). J. Am. Chem. Soc. 120, 12666-12667.
Tanzawa, T., Ichioka, M., Shirai, N. \& Sato, Y. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 431-436.
Wang, W., Li, T. \& Attardo, G. (1997). J. Org. Chem. 62, 6598-6602.

